一、LYDN-6000臺式電能質量分析儀的使用說明功能特點
1、儀器是集電能表校驗、電參量測試和檢測電網中發生波形畸變、電壓波動和三相不平衡等電能質量問題為一體的高精度測試儀器。
2、不停電、不改變計量回路、不打開計量設備情況下,在線實負荷檢測計量設備的綜合誤差。
3、準確測量電壓,電流,有功功率,無功功率,相角,功率因數,頻率等多種電參量,從而計算出測試設備回路的測量誤差。
4、可選配虛擬負載箱,當用戶無負荷或超低負荷時,也能對電表進行準確的測量。
5、可顯示被測電壓和電流的矢量圖,用戶可以通過分析矢量圖得出計量設備接線的正確與否。同時,在三相三線接線方式時,可自動判斷48種接線方式;追補電量自動計算功能,方便使用人員對接線有問題的用戶計算追補電量。
6、電流回路可使用鉗形互感器進行測量,操作人員無須斷開電流回路,就可以方便、的進行測量。
7、可校驗電壓表、電流表、功率表、相位表等指示儀表以及三相三線、三相四線、單相的1A、5A的各種有功和無功電能表。
8、可采用光電、手動、脈沖等方式進行電能表校驗。
9、測量分析公用電網供到用戶端的交流電能質量,可測量分析:頻率偏差、電壓偏差、電壓波動、三相電壓允許不平衡度和電網諧波。
10、可顯示單相電壓、電流波形并可同時顯示三相電壓、電流波形。
11、負荷波動監視:測量分析各種用電設備在不同運行狀態下對公用電網電能質量造成的波動。記錄和存儲電壓、電流、有功功率、無功功率、視在功率、頻率、相位等電力參數。
12、 電力設備調整及運行過程動態監視,幫助用戶解決電力設備調整及投運過程中出現的問題。
13、可選配條碼掃描器,對電表的條碼進行自動錄入。
14、電能表的485通訊接口進行檢測,并能完成現場校驗多功能(智能)電能表的工作需求,可根據電表中已設置的需量周期和滑差的時間對需量進行誤差校驗。
15、具備萬年歷、時鐘功能,實時顯示日期及時間。可在現場校驗的同時保存測試數據和結果,并通過串口上傳至計算機,通過后臺管理軟件(選配件)實現數據微機化管理。
16、采用大屏幕進口彩色液晶作為顯示器,中文圖形化操作界面并配有漢字提示信息、多參量顯示的液晶顯示界面,人機對話界面友好
17、體積小、重量輕,便于攜帶,既可用于現場測量使用,也可用做實驗室的標準計量設備。
二、LYDN-6000臺式電能質量分析儀的使用說明技術指標
1、輸入特性
電壓測量范圍:0~400V,57.7V、100V、220V、400V四檔自動切換量程。
電流測量范圍: 0~5A,內置互感器分為5A(CT)檔。鉗形互感器為5A(小鉗)、25A(小鉗)、100A(中鉗)、500A(中鉗)、400A(大鉗)、2000A(大鉗)六個檔位。(其中中型鉗表和大型鉗表為選配)
相角測量范圍:0~359.999°。
頻率測量范圍:45~55Hz。
2、準確度
計量校驗部分:
電壓:±0.05%(±0.1%)
電流:±0.05%(±0.1%)(鉗形互感器±0.5%)
有功功率:±0.05%(±0.1%)(鉗形互感器±0.5%)
無功功率:±0.3%(±0.5%)(鉗形互感器±1.0%)
有功電能:±0.05%(±0.1%)(鉗形互感器±0.5%)
無功電能:±0.3%(±0.5%)(鉗形互感器±1.0%)
頻率:±0.05%(±0.1%)
相位:±0.2°
3、電能質量
基波電壓和電流幅值:基波電壓允許誤差≤0.5%F.S.;基波電流允許誤差≤1%F.S.
基波電壓和電流之間相位差的測量誤差:≤0.5°
諧波電壓含有率測量誤差:≤0.1%
諧波電流含有率測量誤差:≤0.2%
三相電壓不平衡度誤差:≤0.2%
4、工作溫度
工作溫度:-10℃~ +40℃
5、絕緣
⑴、電壓、電流輸入端對機殼的絕緣電阻≥100M?。
⑵、工作電源輸入端對外殼之間承受工頻1.5KV(有效值),歷時1分鐘實驗。
6、標準電能脈沖常數
標準電能脈沖常數:內置互感器常數(FL)=10000 r/kW·h ,
鉗型互感器常數(FL):
5A |
25A |
100A |
500A |
400A |
2000A |
10000r/KW·h |
2000 r/KW·h |
500 r/KW·h |
100 r/KW·h |
125 r/KW·h |
25 r/KW·h |
7、重量
重量:2Kg
8、體積
體積:32cm×24cm×13cm
三、LYDN-6000臺式電能質量分析儀的使用說明結構外觀
1、外型尺寸及面板布置
儀器外形正視如圖一:
儀器面板下方的左側是液晶顯示器,右側是按鍵區;上方左側為接線端子部分,包括:電壓輸入端子UA、UB、UC、UN;電流輸入端子Ia+、Ia-、Ib+、Ib-、Ic+、Ic-(其中Ia+、Ib+、Ic+為電流流入端,Ia-、Ib-、Ic-為電流流出端 ;鉗形電流互感器接口(A相鉗、B相鉗、C相鉗);向右為接地端子、光電及脈沖信號接口和232串行口(用于上傳保存的數據至計算機);右端為充電器接口(用于連接充電電源)和儀器工作開關;下方為打印機。
儀器須及時充電,避免電池深度放電影響電池壽命,正常使用的情況下盡可能每天充電(長期不用在兩周內充一次電),以免影響使用和電池壽命,每次充電時間應在6小時以上。
儀器的配件箱尺寸,如圖二所示:
2、鍵盤操作
鍵盤共有30個鍵,分別為:存儲、查詢、設置、切換、↑、↓、←、→、?、退出、自檢、幫助、數字1、數字2(ABC)、數字3(DEF)、數字4(GHI)、數字5(JKL)、數字6(MNO)、數字7(PQRS)、數字8(TUV)、數字9(WXYZ)、數字0、小數點、#、輔助功能建F1、F2、F3、F4、F5。
各鍵功能如下:
↑、↓、←、→鍵:光標移動鍵;在主菜單中用來移動光標,使其指向某個功能菜單,按確認鍵即可進入相應的功能;在參數設置功能屏下上下鍵用來切換當前選項,左右鍵改變數值。
?鍵:確認鍵;在主菜單下,按此鍵即進入被選中的功能,另外,在輸入某些參數時,開始輸入和結束輸入。
退出鍵:返回鍵,非參數輸入狀態時,按下此鍵均直接返回到主菜單。在參數輸入的過程中不起作用。
存儲鍵:用來將測試結果存儲為記錄的形式。
查詢鍵:用來瀏覽已存儲的記錄內容。
設置鍵:在主菜單按下此鍵,直接進入參數設置屏。
切換鍵:出廠調試時生產廠家使用,用戶不需用到此鍵。
自檢鍵:保留功能,暫不用。
幫助鍵:用來顯示幫助信息。
數字(字符)鍵:用來進行參數設置的輸入(可輸入數字或字符),與手機的輸入模式相似,連續按下時可將要輸入的字符在數字和字母之間切換。
小數點鍵:用來在設置參數時輸入小數點。
#鍵:保留功能,暫不用。
F1、F2、F3、F4、F5:輔助功能鍵(快捷鍵)。用來快速進入輔助功能界面或實現相應的功能。在有些功能界面(如:電氣測試、矢量分析、波形顯示等界面)F1和F2用來實現屏幕的鎖定和解鎖功能。F4鍵在有些功能界面實現測試結果打印功能。
3、液晶界面
液晶顯示界面主要有十三屏,包括主菜單(開機即進入)、十二個功能界面,顯示內容豐富。
開機界面
當開機后顯示圖三所示的主菜單界面。屏幕頂端一行顯示狀態參量,包括:程序版本號、電壓檔位、電流輸入方式、日期時間、電池剩余電量(用戶可根據此數值來判斷是否需要為儀器充電)。中部為功能菜單選項,共十二項,包括:參數設置、電氣測試、電表校驗、走字試驗、矢量分析、變比測試、測試_485、波形顯示、頻譜分析、諧波測試、歷史數據、系統校準。通過↑、↓、←、→鍵進行選擇,按確定鍵進入相應功能界面;屏幕下方為提示欄,為用戶進行簡單的操作提示,方便用戶正確操作。
(2)參數設置界面
如圖四所示:參數設置界面用于調整試驗前所需要確定的數據。包括:PT變比、CT變比、電表常數、設定圈數、接線方式、輸入方式、電流輸入、設置日期、設置時間、電表編號。
PT變比 — 當進行高壓計量直接測試時,用來輸入高壓計量表計所接的電壓互感器比值,從而在電氣測試中的一次參量中可直接換算到一次側的電壓值;設置時,先按【確定】鍵進入修改狀態,此時本項參數變成紅色顯示,再按下相應的數字鍵輸入所需的數字,后按【確定】鍵完成設置。
CT變比 — 分兩種情況;當進行高壓計量直接測試時,用來輸入高壓計量表計所接的電流互感器比值,從而在電氣測試中的一次參量中可直接換算到一次側的電流值;當進行低壓計量表計直接從CT一次側取樣進行電表校驗時,用來輸入計量表計所接的電流互感器比值,才能完成正常的校驗;設置時,先按【確定】鍵進入修改狀態,此時本項參數變成紅色顯示,再按下相應的數字鍵輸入所需的數字,后按【確定】鍵完成設置。
電表常數 — 指被測表的標準電能脈沖常數,輸入范圍為0~100000;設置時,先按【確定】鍵進入修改狀態,此時本項參數變成紅色顯示,再按下相應的數字鍵輸入所需的數字,后按【確定】鍵完成設置。
設定圈數 — 指校驗周期,即幾圈(或幾個脈沖)計算一次誤差;先按【確定】鍵進入修改狀態,此時本項參數變成紅色顯示,再按下相應的數字鍵輸入所需的數字,后按【確定】鍵完成設置。
接線方式 — 指被測表計的類型,包括:三線有功、三線無功、四線有功、四線無功四種方式,用【←】、【→】鍵進行切換;
輸入方式 — 指被測表脈沖取樣方式,包括:脈沖(光電)方式和手動方式兩種,用【←】、【→】鍵進行切換;注意,用不同的脈沖取樣方式時一定要將本參數設置為與之相應的方式,否則測試可能不正常;
電流輸入 — 指電流的取樣方式以及不同取樣方式下電流量程的選擇,用【←】、【→】鍵進行切換;共包括:5A【內部CT】、5A【小鉗】、25A【小鉗】、100A【中鉗】、500A【中鉗】、400A【大鉗】、2000A【大鉗】7種方式,其中5A【內部CT】指內置電流互感器輸入方式,此種方式精度高,但在現場時電流接入比較麻煩,一般在試驗室采用此種方式;其它6中帶鉗的指鉗形互感器輸入方式,本儀器共支持3種鉗表的使用,標準配置為小鉗表(開口圓形,直徑為8毫米,可選擇5A和25A兩種檔位),**種為中型鉗表(開口圓形,直徑為50毫米,可選擇100A和500A兩種檔位),第三種為大型鉗表(開口長園形,長端為125毫米,寬50毫米),鉗表方式的優點是現場接入方便,不需斷開電流回路,但精度較低。
表號 — 人為輸入編號用于區分被試品結果,以便在查閱時不會將多組結果混淆,表號可為數字或字母,多輸入12位。
(3) 電氣測試界面
此屏顯示出當前測量的三相電壓幅值(Ua、Ub、Uc)、三相電流幅值(Ia、Ib、Ic)、三相電壓電流之間的夾角(Φa、Φb、Φc)、三相有功功率數值(Pa、Pb、Pc)、三相無功功率數值(Qa、Qb、Qc)、三相視在功率數值(Sa、Sb、Sc),以及總有功功率、總無功功率、總視在功率、實測頻率、總功率因數。如果接線方式為三相三線時,電壓Ua表示Uab參量、Uc表示Ucb參量。
當按下F4鍵時,此屏變換為顯示一次參量值,所顯示的數據都是根據PT變比和CT變比折算到互感器一次側的數值。
按下F1鍵可鎖定當前顯示的數據,按F2鍵變為刷新狀態。
(4) 電表校驗界面
電表校驗屏如圖六所示,此屏分為四部分數據:誤差統計部分、當前誤差部分、輸入參數部分、測試參數部分;
誤差統計部分:顯示出誤差1、誤差2、誤差3、誤差4、誤差5連續記錄的近五次誤差,平均誤差(近五次誤差的平均值),由近五次誤差計算得來的標準偏差估計值;
當前誤差部分:顯示出算定的標準脈沖(此參量為內部計算用,用戶不需理解)、實測脈沖(此參量為內部計算用,用戶不需理解)、當前圈數、當前誤差(后一次的誤差值)、累計電能;
輸入參數部分:顯示出設置的PT變比和CT變比值,當前設定的電表常數、設置圈數、電表類型、輸入方式、電表編號;當誤差不正常時,首先要檢查輸入參數部分的設置是否正確,這些參數直接影響測試結果的準確性。
校驗完成后,按【存儲】鍵可將測試結果以記錄的形式保存。
(5) 電表校驗-走字試驗界面
此屏顯示出從進入此界面開始到當前時刻的累計有功電能,進入后記度器自動開始走字,當按下【確定】鍵后數據清零,重新開始走字,顯示出當前累計的電能數值;在此功能屏下可用來進行電表的走字試驗,與表記記度器對比,防止換銘牌或齒輪的竊電手段。
(6)矢量分析界面-三相四線
如圖八所示,在屏幕的左上部分顯示出三相四線制計量裝置的實測矢量六角圖,同一個坐標系中三相電壓、三相電流六個量的矢量關系;在屏幕的右上部分顯示出三相電壓、三相電流的幅值和各個量以Ua為參照量的的相位角;屏幕的下半部分是用來顯示接線結果的分析情況,包括:相序、接線判斷、錯接線更正系數,對于三相四線制的接線不進行矢量圖的分析,也不提供追補電量的更正系數,用戶可以通過此屏中的矢量圖直觀的看出三相四線計量裝置的接線是否正確,各相負荷的容、感性關系,上圖所示為標準阻性負載時接線全部正確情況下的向量圖。
(7)矢量分析界面-三相三線
如圖九所示:在屏幕的左上部分顯示出三相三線制計量裝置的實測矢量六角圖,同一個坐標系中兩個電壓參量(Uab、Ucb)、兩個電流參量(Ia、Ic)四個量的矢量關系;在屏幕的右上部分顯示出電壓Uab和Ucb、電流Ia和Ic的幅值和各個量以Ua為參照量的的相位角;屏幕的下半部分是用來顯示接線結果的分析情況,包括:相序、接線判斷、錯接線更正系數,根據不同的負荷情況功率夾角的不同分4種角度范圍(感性-5~55、感性55~115、容性-5~-65、容性-65~-125)對各48種接線方式進行結果判定,上圖所示為標準阻性負載時接線全部正確情況下的向量圖,由于純阻性負載的功率夾角為0°,屬于-5~55的范圍,因此我們要看接線分析的第1行感性(-5~55)的結果,另外三行的分析結果無效;圖中接線判斷中的“正”表示電壓是正相序,如為逆相序應顯示“負”;“Ua Ub Uc”表示電壓接線是應為“Ua Ub Uc”的位置上所接的是“Ua Ub Uc”電壓接線正確;“+Ia +Ic”表示電流接線應為“Ia Ic”的位置上所接的是“Ia Ic”相別正確,“+”表示極性也都是正確的;更正系數為“1”表示接線正確,電能計量值不需更正,如果接線不正確的情況下結果中會給出具體的補償系數(根據不同種類的接線錯誤可能為數值,也可能為公式)。具體的接線方式判定結果分析表見附件。
(8)變比測試界面
用來進行低壓計量用電流互感器變比的檢測,屏中首先給出接線提示:一次電流用C相鉗表進行測量,同時顯示出當前選擇的鉗表形式和檔位(用戶可根據被測互感器的實際電流情況選擇不同的鉗表,在不超量限的情況下盡可能的選擇接近的電流檔位),注意:鉗表的使用和參數設置中電流檔位的選擇一定要對應,否則會造成測試結果不正常的情況,例如:用戶使用口徑為50毫米的鉗表進行測量時,本應在100A【中鉗】和500A【中鉗】兩種量程中選擇,但用戶錯誤的選擇了400A【大鉗】或2000A【大鉗】中的一種,就會造成測試結果不正常;屏中還顯示一次側實測電流值、二次側實測電流值、測試變比值、測量夾角(通過夾角可判定互感器的一次側和二次側是否極性相同、是否相別一致;如果夾角為0°左右,則說明互感器一次和二次同極性且同相別;如果夾角為180°左右,則說明互感器一次和二次同相別但極性反;如果夾角為60°、120°、240°或300°左右的數值,則說明相別和極性都可能反)。
(9)測試_485界面
這個界面用來對全電子式多功能電能表進行485通訊接口正常與否和各個功能參數的測試;
共分四屏,按F1可調出現場表各費率點及總的電能參數。
按F2顯示各費率點及大功率需量。
按F3可調三相電壓、電流、有功功率、無功功率、功因數。
按F4顯示現場表的工作狀態如近編程時間、需量清零時間、編程次數、需量清零次數、電池工作時間、電表日期、系統時間、大需量周期、滑差時間、自動抄表日期等。
(10)波形顯示界面
如圖十五所示:在此屏中可顯示出當前各個被測模擬量的實際波形,波形實時刷新,能直觀的反映出被測信號的失真情況(是否畸變、是否截頂),本屏中顯示當前顯示為Ua、Ia的波形 , 用【↑↓】鍵來切換不同的顯示通道;可切換為B相電壓、電流的波形,C相電壓、電流的波形,A、B、C三相所有的電壓的波形,A、B、C三相所有的電流的波形,A、B、C三相所有的電壓和電流的波形;可以做為簡單的示波器使用。屏幕下方顯示出各相電壓的有效值、較大峰值、較小峰值、各相電流的有效值、較大峰值、較小峰值。
(11)頻譜分析界面
如圖十六所示:此屏以柱狀圖的形式顯示出各相電壓、各相電流的諧波含量分布情況,還能顯示出諧波失真度和各次諧波含量數值。通道UA-UB-UC-IA-IB-IC提示當前通道(可通過←、→鍵來改變所選通道),1%-10%為各諧波分量百分比(當所有次數的諧波含量都小于10%時進行放大顯示,即以10%做為滿刻度;當有一項以上的諧波含量大于10%時,正常顯示,即以百分之一百做為滿刻度),05-30指示的是諧波的次數,右側數值顯示總諧波畸變率THD、有效值和32 次諧波。無失真的信號應顯示第1次諧波(基波)。
(12) 諧波分析-電壓諧波界面
如圖十七所示:此屏顯示各相電壓和電流的諧波含量,從左到右依次為A相電壓(用黃色來顯示)、B相電壓(用綠色來顯示)、C相電壓(用紅色來顯示)、A相電流(用黃色來顯示)、B相電流(用綠色來顯示)、C相電流(用紅色來顯示),其中THD為各相的電壓波形畸變率(即諧波失真度),RMS為各相電壓和電流的有效值,01次為基波電壓和基波電流(用實際幅值表示),以下依次為其它各次諧波的數值,以有效值形式和基波的百分比兩種形式表示,以數據表的形式顯示1-63次電壓諧波。可通過↑↓鍵來切換低21次(01-21)和中21次(22-42)、高21次(43-63)諧波含量的表格。
(13)歷史數據界面
如圖十八所示,此屏顯示內存中已存儲記錄的各項數據,包括:總記錄條數、當前查閱的記錄排號、測試的日期時間、被測表號、實測電能誤差、接線方式、三相電壓和電流相角數值、三相電壓和電流向量圖、三相電壓幅值、三相電流幅值、三相有功功率、三相無功功率。
(14)系統校準界面
此界面為調試專用界面,僅供出廠前調試用,用戶無法進入。
四、LYDN-6000臺式電能質量分析儀的使用說明使用方法
1、電表接線原理
⑴ 三相三線和三相四線測量原理簡介:
三相三線制測量是指使用兩個功率元件實現對三相線路的測量,相當于在電路中分別接入兩只電流表(串聯在A、C兩相)、兩只電壓表(分別并聯在AB之間和CB之間)和兩只功率表(電流線圈串聯在A、C相,電壓線圈并聯在AB和CB之間),其測量原理如圖十九所示
圖十九、三相三線計量原理圖
三相四線制測量是指使用三個功率元件實現對三相線路的測量,相當于在電路中分別接入三只電流表(分別串聯在A、B、C三相)、三只電壓表(分別并聯在A、B、C各相對N相之間)和三只功率表(電流線圈分別串聯在A、B、C相,電壓線圈分別并聯在A、B、C對N之間),其測量原理如圖二十所示
2、三相四線低壓電能表經鉗表接入接線
三相四線制低壓電能表經鉗形互感器接線校驗如下圖二十一
先將電壓線首端的插棒按顏色分別接到儀器面板相應的A、B、C、N電壓端子上,電壓線末端的鱷魚夾分別接到被測表表尾的A、B、C、N相電壓線上;再將各相的鉗形互感器插到有相應標號的接口上,然后用鉗形互感器卡住對應相的電流線即可。(注意:極性一定要接正確,鉗形電流互感器標有A、B、C的一面為電流流入端,N的一面為流出端)。
打開儀器開關,先按照被測表參數將“參數設置”屏中相應的參數設置正確,然后,即可進入相應的界面進行測試。
3、三相四線低壓電能表經內部CT接入測試
三相四線低壓電能表經內部CT接入接線校驗如圖二十二所示:
先將電壓線首端的插棒按顏色分別接到儀器面板相應的A、B、C、N電壓端子上,電壓線末端的鱷魚夾分別接到被測表表尾的A、B、C、N相電壓線上;將電流線的首端插棒按顏色接到儀器面板相應的電流端子上,有標記的接電流正端,無標記的接電流負端,電流線末端的鱷魚夾(或插片)接到端子排兩側(I+接到遠離表計側,I-接到靠近表計側),然后將端子排的連片打開。
打開儀器開關,先按照被測表參數將“參數設置”屏中相應的參數設置正確,然后,即可進入相應的界面進行測試。
目前有這種端子排的接線方式已經很少見,對于沒有端子排的只能采取鉗表接入法。
4、三相三線高壓電能表經鉗表接入接線
三相三線高壓電能表經鉗表接入接線如圖二十三所示:
先將電壓線首端的黃、綠、紅插棒分別接到儀器面板相應的A、N、C電壓端子上(即黃色插棒接到電壓端子UA上,綠色插棒接到電壓端子UN上,紅色插棒接到電壓端子UC上,UB端子不接線),電壓線末端的黃、綠、紅鱷魚夾按顏色分別接到被測表表尾的A、B、C三相電壓線上;再將A、C兩相的鉗形互感器插到有相應標號的接口上,然后用鉗形互感器卡住對應相的電流線即可。(注意:極性一定要接正確,鉗形電流互感器標有A、C的一面為電流流入端,N的一面為流出端)。
打開儀器開關,先按照被測表參數將“參數設置”屏中相應的參數設置正確,然后,即可進入相應的界面進行測試。
5、三相三線高壓計量表計經內部CT直接接入接線
三相三線高壓電能表經內部CT接入接線如圖二十四所示:
先將電壓線首端的黃、綠、紅插棒分別接到儀器面板相應的A、N、C電壓端子上(即黃色插棒接到電壓端子UA上,綠色插棒接到電壓端子UN上,紅色插棒接到電壓端子UC上,UB端子不接線),電壓線末端的黃、綠、紅鱷魚夾按顏色分別接到被測表表尾的A、B、C三相電壓線上;將電流線的首端A、C兩相插棒按顏色接到儀器面板相應的電流端子上(B相線不用),有極性端標記的接電流正端,無標記的接電流負端,電流線末端的鱷魚夾(或插片)接到端子排兩側(I+接到遠離表計側,I-接到靠近表計側),然后將端子排的連片打開。
打開儀器開關,先按照被測表參數將“參數設置”屏中相應的參數設置正確,然后,即可進入相應的界面進行測試。
內部CT直接接入的方式能達到高的測試精度,但接線比較繁瑣。
6、單相接線
單相接線方式與三相四線制接線相同,只需將電壓、電流線接入儀器的同一相的電壓和電流端子即可(因接線簡單,不再給出接線圖)。
7、測量諧波
測量電壓諧波時只須輸入電壓信號,電流諧波時只須輸入電流信號。
8、電表脈沖信號的獲取方法
在進行電能表校驗時,需要獲取被測電能表的電能脈沖信號。有3種方式可以獲得此信號:光電采樣器、手動開關、專用脈沖測試線;針對不同種類的電能表,可以通過不同的方式來進行測試。下面給出幾種常用的電能表電能脈沖的獲取方式。
(1)、對于機械式電能表,可以通過光電采樣器進行脈沖的自動獲取;將光電采樣器設定為發光狀態(通過按下光電采樣器線中部方盒上的紅色按鈕來切換),將三個發光二極管所發出的光束對準被校表的鋁盤中央,適當調整光電采樣器相對于表盤的位置,同時根據對黑斑的敏感程度調節光電采樣器線中部方盒中央的旋鈕以改變采樣敏感度,防止誤采和漏采,終達到正常采樣的狀態。
(2)、對于機械式電能表,也可以通過手動開關進行脈沖的人工獲取;操作人員手握手動開關,拇指輕放在手動開關按鈕上,目視鋁盤,當鋁盤上的黑斑轉動到電表正面的中央刻度時,迅速按一下按鈕,此時,儀器記錄下校驗周期的起始位置,操作人員連續觀察鋁盤的轉動,當黑斑到來的次數達到設定的校驗圈數時,再次迅速按下按鈕,完成校驗,儀器會自動計算出電表誤差。由于有人為因素參與到脈沖的取樣,會造成誤差的不穩定度,可適當增加設定的校驗圈數來消除。
(3)、對于電子式電能表,可以通過光電采樣器進行脈沖的自動獲取;將光電采樣器設定為不發光狀態(通過按下光電采樣器線中部方盒上的紅色按鈕來切換),將光電采樣器的接收頭(位于三個發光二極管的中央)對準被測表的脈沖燈,適當調整光電采樣器相對于表盤的位置,同時根據對脈沖燈發光的敏感程度調節光電采樣器線中部方盒中央的旋鈕以改變采樣敏感度,防止誤采和漏采,終達到正常采樣的狀態。
(4)、對于電子式電能表,還可以通過專用脈沖測試線進行脈沖的自動獲取;儀器隨機配備了一條專用脈沖測試線,頂端有4個鱷魚夾,分別標有:VCC(輔助電源)、TESE-IN(信號輸入)、FL-OUT(標準脈沖輸出)、GND(地)。使用人員需要根據電能表電能脈沖的輸出方式不同(包括有源輸出和無源輸出兩種方式)選擇不同的信號線進行取樣,當被測表脈沖信號為有源輸出方式時,用標有“信號”和“地”的鱷魚夾進行取樣,標有“信號”的鱷魚夾接到被測表端子排標有“有功正”的端子,標有“地”的鱷魚夾接到被測表端子排標有“有功負”或“公共端”的端子。當被測表脈沖信號為無源輸出方式時,用標有“VCC”和“信號”的鱷魚夾進行取樣,標有“VCC”的鱷魚夾接到被測表端子排標有“有功正”的端子,用標有“信號”的鱷魚夾接到被測表標有“有功負”或“公共端”的端子。
9、儀器送檢時脈沖測試線使用方法
根據計量檢定規程的要求,電能表現場校驗儀在出廠時應進行檢定,在投入使用后還應定期進行復檢。在送檢時用標準設備對校驗儀輸出的標準電能脈沖進行檢測。本測試儀的標準電能脈沖由專用脈沖線中標有FL的鱷魚夾和標有GND的鱷魚夾輸出(各檔位具體常數參見“技術指標”中的第6項-標準電能脈沖常數表格),注意:只有在“電表校驗”、“走字試驗”、“主菜單”三個界面才向外輸出標準電能脈沖。
五、LYDN-6000臺式電能質量分析儀的使用說明常見故障分析
1、常見故障
⑴裝置接線錯誤
⑵電能表故障
⑶CT部分故障
2、經驗判斷
⑴計量裝置正常時綜合誤差(含CT誤差、二次接線誤差和電表誤差)在±3%時。
⑵綜合誤差在-10%至-3%時一般可能為
a、電表不準
b、CT二次負載重
c、CT負誤差
⑶綜合誤差超過10%時可能為
a、CT二次接線錯誤
b、CT變比不對
c、缺相或錯相
一般現場工作時可先進行綜合誤差的測量,綜合誤差在±3%時系統基本沒有問題,當綜合誤差較大時可分別進行CT誤差、電表誤差的校驗及線路診斷。
3、三相四線制線路常見問題
⑴缺一相
缺某相電壓、電流時,可從分析儀的“測量參量1”或“矢量圖”兩功能項直接看出。缺相原因一般是計量裝置的三組元件中的某一組元件出現故障或接線斷開。具體可能原因如下:
a、電能表電壓線圈一相不通(線圈斷路、雷擊、電壓掛鉤與螺釘未接觸)
b、計量回路一次測某相保險熔斷或接觸不行
c、電壓二次回路一相線路斷路(保險熔斷或接觸不行)
d、電表或CT本身一相電流線圈或CT二次繞組開路(線圈燒斷、電能表接線端或二次接線端接觸不上)
e、二次電流回路中某相電流開路
⑵缺兩相
與缺一相的原因和情況基本類似。
⑶電流一相或幾相反向
電流反向可從 “矢量”功能中看出,例如上圖所示的情況為A相電流反向,反向后角度與正常應相差180°,
造成此種現象的原因為:
a、A相CT 的K1、K2接反
b、A相CT電纜穿出方向反向
c、CT上K1、K2與實際標注不符
⑷電壓與電流錯相
一相或幾相電壓和電流不對應,使實際角度與正常差120°或240°,如下圖(圖二十二)
4、三相三線制線路分析方法
三相三線制線路接線正確時矢
量圖如右圖,錯誤接線的分析方法參
照三相四線制線路。
5、單相表測量
單相表測量時可用儀器的任意一相進行(通常情況用A相),情況比較簡單,此處不做具體講解。
6、CT常見故障及原因
⑴故意更換CT銘牌
⑵CT精度不合格
⑶CT損壞
7、電能表故障
如果接線正確但誤差還是很大,則應調整或更換電表。
六、電池維護及充電
儀器采用高性能鋰離子充電電池做為內部電源,操作人員不能隨意更換其他類型的電池,避免因電平不兼容而造成對儀器的損害。
儀器須及時充電,避免電池深度放電影響電池壽命,
正常使用的情況下盡可能每天充電(長期不用在一個月內充一次電),以免影響使用和電池壽命,每次充電時間應在6小時以上,因內部有充電保護功能,可以對儀器連續充電。
每次將電池從儀器中取出后儀器內部的電池保護板自動進入保護狀態,重新裝入電池后,不能直接工作,需要用充電器給加電使之解除保護狀態,才可正常工作。
七、注意事項
1、在對測量精度要求較高時,較好要用內部互感器進行測量。接電流互感器時一定要嚴格保證電流互感器二次側不開路。
2、鉗形互感器是高精密的測量互感器,一定要注意輕拿輕放,避免磕碰、摔壞,否則會影響測試精度。鉗形表切口面需保持干凈、光潔,不要污染其它雜物,以保證鉗形表閉合良好。
3、測試開始前請輸入正確的設置參數,否則可能會造成數據結果偏差或錯誤。
4、用鉗形表卡一次鋁排時,一定不要讓鉗形表切口鐵芯碰到鋁排,否則可能發生危險,損壞鉗形表及儀表。
附錄一:常見竊電方式
△缺相法 △欠壓法 △欠流法
△移相法 △K1、K2反接法 △破壞電表法
附錄二:被測輸入輸出接口示意圖
此圖為面對面板方向
附錄三:標準脈沖接口示意圖
附錄四: 三相三線計量接線判斷
情況一:A、C相電流正確
情況二:A相電流反向
情況三:C相電流反向
情況四:A、C相電流全反向
情況五:A、C相電流相間接錯,極性正確
情況六:A、C相電流相間接錯,且A相反向
情況七:A、C相電流相間接錯,且C相反向
情況八:A、C相電流相間接錯,且都反向
以上所提供的48種接線矢量圖中只有**種情況是正常的接線,其他圖都有不同的問題。
在每幅圖的下側給出了判定結果,包括電壓接線結果和電流的接線結果,同時還標注了相序的正確與否。
導語:今天基層督查檢查考核之所以太多太濫,恰恰是國家治理能力不足所致的。其中的關鍵是:當中央和上級政府的控制權急劇增強,而國家基礎能力又未同步提高時,上級對下級控制權的實現必然依賴于可視化的“痕跡管理”,而無法依靠實績評價。
近日,中央辦公廳印發《關于統籌規范督查檢查考核工作的通知》,對一段時間以來基層反應強烈的上級督查檢查考核過多過濫的問題進行規范治理。其中特別規定,對縣鄉村和廠礦企業學校的督查檢查考核事項要減少50%以上。
應該說,中央的通知是及時的,亦點中了基層的痛點。不過,在實際工作中,兼顧上級權威與基層自主性,政策的統一性和靈活性,并非易事。平心而論,當前形式主義、官僚主義問題突出,導致基層苦不堪言的問題,既不能簡單歸咎于上級決策的“不接地氣”,亦不能簡單理解為基層工作的教條僵化,而是政府間上下級關系的失衡,責、權、利不對等的結果,是國家治理體系和治理能力不足的表現。
“壓力型體制”的形成
任何一個行政體系,督查檢查考核系統都是必須的,這是上級能夠“控制”下級的前提。大致而言,上下級政府間圍繞著目標設置、檢查考核、激勵分配及剩余分配形成不同互動模式。
上世紀90年代,一種以目標管理為核心特征的基層“壓力型體制”逐漸形成。其核心特征是,上級政府將經濟社會發展的各項目標任務進行“數字化”管理,并建立各個指標體系,層層分解,層層加壓。由于目標任務“可視化”,亦是可計算的、可比較的,使得所有基層政府都圍繞著GDP、計劃生育率等指揮棒展開競爭,“壓力型體制”亦是一個“錦標賽體制”。
應該說,過去我國的基層治理之所以有活力,基層政府普遍積極行政,基層在“趕超型”國家發展戰略中發揮了基礎作用,恰恰源自于這一體制在特定的歷史條件下發揮了一定積極作用。
第1、這一體制是在中央向地方“放權”的過程中塑造出來的。上世紀89十年代,我國的央地關系呈現出中央放權、地方分權的趨勢。從控制權的分配上看,中央除了掌握國防、外交、宏觀調控等必要的權力,經濟發展和社會事務等各項權力都下放給了地方。
這一趨勢亦傳導到地方各層級政府關系之中,這使得在控制權的分配上,上級政府往往只掌握目標設定權以及輔以其中的檢查考核權,將激勵分配權和剩余控制權都讓渡給基層,基層因此獲得了極大的自主性。但因為上級政府往往“只要結果、不要過程”,在諸多時候,還默認基層政府為達到目標而不擇手段——這也就可以解釋,為何上世紀90年代末全中國的鄉鎮政府中稅費征收、計劃生育等“國策”執行過程中,都不同程度地存在權力濫用等情況。
**、這一體制是在“監控型國家”遠未建立起來的時候塑造出來的。在當時的技術條件下,央地之間、地方各層級政府之間的信息不對稱是普遍存在的事實,上級政府非常清楚它不可能有效監控基層政府行為。哪怕是掌握了檢查考核權,因行使這一權力需要高度有效的信息渠道,上級政府對問責機制的啟用極為慎重。多數情況下,上下級政府只是將檢查和“迎檢”的游戲當作上級控制權的“展臺”,并不真正激活檢查考核權。只有在有確切的證據的情況下(如媒體曝光、群眾反復**告狀),問責機制才會啟動。
“壓力型體制”的弊病
這么說來,上下級政府間的“默契”,是國家治理能力有限情況下的必然產物。
一位鄉鎮黨委書記給筆者講過一個故事,很能說明這個道理。他在擔任黨委書記的時候,上級相關部門布置過一個任務:3個月之內要種40畝地的樹。他就將這個任務分配給分管副鎮長去辦理,并指示財政所給予足夠的經費支持。過了3個月,這位副鎮長匯報說任務已經完成了;這位黨委書記表達了贊許之意,說那就寫個報告向上匯報吧,這事就算結束了。
事實上,這位鄉鎮黨委書記說,他****確定不可能完成任務,因為其轄區就不可能找到40畝荒地;這就意味著,鄉鎮財政足額撥付的經費,這位分管副鎮長肯定從中貪污了一部分。但他作為一個有經驗的黨委書記,不可能捅破這層紙。因為一捅破會有無盡的麻煩:一、如何向上級交代?其實上級或許也清楚這個任務因各地情況不一,不可能都完成。但如果自己主動承認完成不了,上級政府如秉持實事**的精神,就得下來調研、重新安排指標,費時又費力;如果不實事**,那就問責了事——但上級又如何向更上1級交代呢?二、讓下屬怎么干?
副鎮長在接下這個任務的時候,很清楚是不可能完成任務的。但他還是接下了,某種程度上是為領導分憂——真出了問題,他得擔責。因此,哪怕是副鎮長真貪污了種樹款,也是一種“激勵分配”。
很顯然,壓力型體制和錦標賽體制雖發揮了地方的積極性,但也是有限度的。其大的弊病是,基層政府“不作為”、“亂作為”的可能性大大增加。在當時的技術條件下,上級政府為了約束基層政府,只能通過一些“簡單、粗暴”(卻也有效)的辦法來補救。比如,“一票否決”就是這種性質的制度設計。把稅費征收、計劃生育、生產等中心工作列為“一票否決”事項,傳遞的政策信號是這些事項不可糊弄,必須保質保量完成。在這個意義上,基層政府為了完成中心工作,可謂是不遺余力;但對類似種樹這樣的“軟指標”糊弄糊弄,亦再正常不過。
檢查考核權實質化后的問題
農村稅費改革后,基層政府行為普遍出現了從“積極行政”向“消極行政”的轉向。這基于農村稅費改革及免稅政策的實施,以及農村計劃生育轉型,導致基層治理告別了“趕超”時代有關,更與近十余年來央地關系的變化有關。
與上世紀89十年代的地方分權趨勢不同,近十余年間,中央和省級政府通過垂直化管理執法、市場監管等部門,開始了一場新的集權化轉變。這在某種程度上重塑了基層治理:由于上級掌握了財政和行政權力,基層政府的自主性大大下降,基層政府更是圍繞著上級的指揮棒轉,上下級政府間的博弈空間大為縮減。
這在控制權的分配上體現尤甚:上級政府不僅繼續掌握著目標設置權,還在相當大程度上掌握著激勵分配權,基層的剩余控制權也被有效制約。而為突出的表現是,依賴于紀委監察和政府督查力量的持續強化,檢查考核權具有了實質意義。
應該說,檢查考核權的實質化,是國家治理能力提升的表現。客觀上,檢查考核之所以起作用,而不是像上世紀89十年代一樣淪為“游戲”,是國家基礎能力提升的結果。
比如,在精準扶貧的過程中,基層對這一領域的形式主義、官僚主義問題反應為激烈。但如果跳開扶貧工作本身,可以看見精準扶貧很可能為國家治理現代化提供了契機。如果不是扶貧系統及各級黨委政府絞盡腦汁要精準識別貧困、精準施策、精準脫貧,或許類似大數據核查系統這樣的治理技術不會產生地那么快。正因為有了這個系統,連帶著低保政策實施、微腐敗治理等基層治理實踐,也變得高效而規范起來。
反過來說,今天基層督查檢查考核之所以太多太濫,恰恰是國家治理能力不足所致的。其中的關鍵是:當中央和上級政府的控制權急劇增強,而國家基礎能力又未同步提高時,上級對下級控制權的實現必然依賴于可視化的“痕跡管理”,而無法依靠實績評價。
同樣以精準扶貧為例。大數據核查系統是可以排除一些明顯有房有車有存款的假貧困戶,但絕大多數農民的收入和支出過程都沒有“留痕”,很多非正規經濟亦未“數目字化”時,“精準”從何而來?為了接近“精準”目標,只能依靠扶貧干部反復“算賬”。高度精準的系統以秒為單位計算出的扶貧問題,基層就得以天、月為單位,再加上人海戰術來回應計算機提出的問題。
久而久之,真正一線的扶貧工作倒是不重要了,重要的是“算賬”,讓系統有效運作。可見,這幾年盡管國家基礎能力提升了不少,但遠未到可以準確計算的時代。當前基層之所以受困于形式主義和官僚主義,根源在于我們在用計算機的方式來治理算盤時代的社會。
上下責、權、利的不對等
基層治理其實是有規律可循的。基本原理是:上下級政府間需要在權、責、利上形成相對的平衡關系。而這個平衡關系,除了受國家治理能力和社會本身的“可視化”水平的影響,直接的還是控制權的分配問題。
當前,一種以行政理性化和技術治理為特征的“集權”正在開展,上級政府部門通過項目制、問責制、目標考核制、辦事留痕等技術手段,將基層政府行為納入到了“制度的籠子里”。而同時,在基層,過去經過長期實踐已經適應了的數目字化管理領域(如GDP),不再衡量基層治理績效的主導要素;而一些未能高度數目字化管理的領域,如黨建、環保、維穩等,漸漸成了基層治理等重要任務。
這就意味著,一方面,集權化使得上級政府,尤其是那些垂直化管理等部門,獲得了對基層政府的部分“控制權”,使得它們普遍以強化“屬地責任”的名義將部門責任轉嫁給基層政府;另一方面,隨著國家治理轉型,一些“軟指標”漸漸“硬指標化”,且又苦于無法有效“智能計算”,就只能依賴于傳統的的督查檢查考核等方式來獲取信息。
在這個意義上,上級部門和基層政府間的責、權、利不對等,在治理任務急劇加重等情況下,加劇了形式主義和官僚主義的問題。
比如,各地這幾年對環保和生產問題愈來愈重視,而環保部門和安監部門又是垂直管理部門。導致的結果是,環保和安監等部門借著中央對相關議題高度重視的勢,不斷強調基層政府對相關問題的“屬地責任”,動不動就啟動問責機制。問題是,基層政府無法有效履行屬地管理的權利,因為相關的執法權只有部門,準確地說只有擁有執法資格的少量執法隊員才能履行;更麻煩的是,部門垂直化管理同時意味著部門分割,執法權的分散必然造成執法效率的低下。
這便是基層普遍存在的“條塊分割”導致的責、權、利不對等的問題。在基層治理中,基層政府抱怨執法權不在身上,根本就不可能有效治理;部門則抱怨,基層政府有屬地責任,如果平常管理地好,哪至于到執法這一步?
基層政府還抱怨,“上面千條線、下面一根針”,現在哪個部門都以屬地管理的名義要求基層履職,但也要有那么多人啊——大多數地方的基層政府工作人員,能夠應付上級的各項文字材料就不錯了,哪還有時間精力來落實各個事項?于是,相當部分地區的基層政府以村委會規范化的名義,將村干部納入基層行政體系,一些基層治理事務讓村干部去完成算了——很不幸,連村級組織受困于上級督查檢查考核。
治本之策
從中央發文的思路來看,中央顯然認識到形式主義、官僚主義問題表現在基層,根子在上面。短期內,通過規范、壓縮上級督查檢查考核是有效的。但是,就國家治理現代化的進程看,這一措施或許也只能起到治標的作用。欲有效解決這一問題,還得依賴于國家能力的提升及基層治理體制機制的新。
今年暑期筆者在北京平谷區調研,其“街鄉吹哨、部門報到”的經驗對解決基層督查檢查考核過多過濫的問題有所啟示。其基本做法是,在縣域治理范圍內,不僅保證部門對基層政府對控制權,還賦予街道辦事處和鄉鎮政府的部門考核權和召集權。這樣,面對一些需要部門協調及條塊合作的治理痼疾,街鄉可以“吹哨”召集各職能部門現場“報到”,參與聯合執法。運用這一機制,平谷區猖獗多年的沙石盜采、盜挖黃金等問題得到了有效控制。而部門因參與了治理過程,且治理目標亦“可見”,也就不存在隨意啟動督查檢查考核工作的問題,更不用啟動問責機制。
解決基層督查檢查考核過多過濫的問題,需要有耐心、有定力。
一是要從提高國家基礎能力入手,積小勝為大勝。千萬不要小看了類似“街鄉吹哨、部門報到”以及大數據核查系統這樣的基層探索,它們是一點一滴地提高基層治理能力。
二是適當給基層治理減負。一個地方、一個時期,都只能有一個中心工作,其它工作要圍繞中心工作開展。我們正處于全方面建成小康社會的關鍵時期,同時進行三大攻堅戰,時間緊、任務重是真的;但基層工作也要講究張弛有度、有所側重,抓住主要矛盾,才能避免眉毛胡子一把抓。在這個意義上,筆者還是建議各個地方政府可否做一個調查:基層干部“5+2”、“白+黑”的情況是否普遍?如果普遍,還要輪番督查檢查考核,有必要么?實際上,基層干不干活、干活怎么樣, “可視化”的指標是時間,而不是各種臺賬。